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Introduction

Variational inequalities are a subject of large interest in mathematics, physics
or informatics, due to the numerous applications. One of the problems that
can be formulated involving variational inequalities is the obstacle problem.
There is a direct link between the obstacle problem and the free boundary
problems, as Lewy and Stampacchia [90] showed, and their solution reduces
frequently to optimization problems with constraints.

The main goal of this work is to present a series of duality based algo-
rithms for the variational problems associated with elliptic equations and
inequations. The original results included in Chapter 2 are published in the
papers Merluşcă [100], [101] and [103], and those in Chapter 3, in Merluşcă
[102]. The used methodology is an extension of the ideas introduced by
Sprekels and Tiba [128], Neittaanmaki, Sprekels and Tiba [107].

Key words: obstacle problem, Fenchel Theorem, approximate problem,
approximate methods, biharmonic operator.

1 Mathematical background

In this chapter we summarize some mathematical notions and results re-
garding functional analysis, Sobolev spaces, optimization problems, duality
theory, variational equations and inequalities and approximation methods.

2 Second order problems

We apply a duality based method to the second order general obstacle prob-
lem and show that its approximate solving reduces to finding the solution
of a finite dimensional quadratic minimization problem. In the mathemat-
ical literature, there are other duality approaches, different from the ones
introduced here. Ito and Kunisch [79] introduced a primal-dual active set
strategy and proved that it is equivalent to the semi-smooth Newton method.
An approach using Fenchel’s duality theorem and the semi-smooth Newton
method was used, in Hintermüller and Rösel [78], for obtaining some results
involving semi-static contact problems.

2.1 The duality type method for null obstacle problems

We discuss the obstacle problem in the Sobolev spaces W 1,p
0 (Ω), with p >

dim Ω. The main idea is to solve the problem using an approximate one and
its dual. We apply Fenchel’s theorem to analyse the obtained dual problem.
We show that the solution of the dual approximate problem is, in fact, a
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linear combination of Dirac distributions. In conclusion, solving a quadratic
minimization problem we can build the approximate solution of the primal
problem by simply applying a formula which relates the primal and dual
solutions.

Consider Ω ⊂ Rn a bounded domain with the strong local Lipschitz
property. We study the obstacle problem

min
y∈W 1,p

0 (Ω)+

{
1

2
‖y‖2

W 1,p
0 (Ω)

−
∫

Ω
fy

}
(1)

where f ∈ L1(Ω), p > n = dim Ω and W 1,p
0 (Ω)+ = {y ∈ W 1,p

0 (Ω) : y ≥
0 in Ω}.

By the Sobolev imbedding theorem. we have W 1,p(Ω) → C(Ω) and it
makes sense to consider the approximate problem

min

{
1

2
‖y‖2

W 1,p
0 (Ω)

−
∫

Ω
fy : y ∈W 1,p

0 (Ω); y(xi) ≥ 0, i = 1, 2, . . . , k

}
(2)

where {xi}i∈N ⊆ Ω is a dense set in Ω. For all k ∈ N, we denote the closed
convex cone Ck = {y ∈W 1,p

0 (Ω) : y(xi) ≥ 0, i = 1, 2, . . . , k}.

Proposition 2.1. Problem (1) has a unique solution ȳ ∈W 1,p
0 (Ω)+ and for

all k ∈ N problem (2) has a unique solution ȳk ∈ Ck.

Moreover, we obtain the following result

Theorem 2.2. The sequence {ȳk}k of the solutions of problems (2), for
k ∈ N, is a strongly convergent sequence in W 1,p(Ω) to the unique solution
ȳ of the problem (1).

We apply Fenchel’s duality theorem to obtain the dual problems associ-
ated to the problems (1) or (2). To this end, we consider the functional

F (y) =
1

2
‖y‖2

W 1,p
0 (Ω)

−
∫

Ω
fy, y ∈W 1,p

0 (Ω). (3)

Let q be the exponent conjugate to p. Using the definition of the convex
conjugate and the fact that the duality mapping J : W 1.p

0 (Ω) → W−1,q(Ω)
is a single-valued and bijective operator, we get that the convex conjugate
of F is F ∗(y∗) = 1

2‖f + y∗‖2W−1,q(Ω)
Consider the functional gk = −ICk

. the concave conjugate is

g•k(y
∗) = inf {(y, y∗)− gk(y) : y ∈ Ck} =

{
0, y∗ ∈ C∗k
−∞, y∗ 6∈ C∗k

where C∗k = {y∗ ∈W−1,q(Ω) : (y∗, y) ≥ 0,∀y ∈ Ck}.
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Lemma 2.3. The polar cone of Ck is

C∗k =

{
u =

k∑
i=1

αiδxi : αi ≥ 0

}
where δxi are the Dirac distributions concentrated at xi ∈ Ω, i.e. δxi(y) =
y(xi), ∀y ∈W 1,p

0 (Ω).

Since the domain of gk is D(gk) = Ck and the functional F is continuous
on the closed convex cone Ck, the hypotheses of Fenchel duality Theorem
are satisfied. This implies that

min
y∈Ck

{
1

2
‖y‖2

W 1,p
0 (Ω)

−
∫

Ω
fy

}
= max

y∗∈C∗
k

{
−1

2
‖y∗ + f‖2W−1,q(Ω)

}
(4)

So we obtain the dual approximate problem associated to problem (2)

min

{
1

2
‖y∗ + f‖2W−1,q(Ω) : y∗ ∈ C∗k

}
. (5)

Theorem 2.4. Let ȳk be the solution of the approximate problem (2) and ȳ∗k
the solution of the dual approximative problem (5). Then the two solutions
are related by the formula

ȳk = J−1(ȳ∗k + f) (6)

where J is the duality mapping J : W 1.p
0 (Ω) → W−1,q(Ω). Moreover,

(ȳ∗k, ȳk) = 0.

Remark 2.5. Since ȳ∗k ∈ C∗k , using Lemma 2.3, it yields that α∗i ȳk(xi) =
0, ∀i = 1, 2, . . . , k In conclusion, the Lagrange multipliers α∗i are zero if
ȳk(xi) > 0 and they can be positive only when the constraint is active, i.e.
ȳk(xi) = 0.

2.2 The duality-type method for a general obstacle problem

We extend here the duality method to the general obstacle problem. We
reduce the problem to the null obstacle case and we compute the solutions
using the duality method presented above. We first show that the initial
obstacle may be replaced with another one having zero trace on the bound-
ary and the problem has still the same solution. Afterwards, we perform a
translation to the null obstacle case and we can apply the theory form the
previous section.

We consider the following obstacle problem

min

{
1

2

∫
Ω
|∇y|2 −

∫
Ω
fy : y ∈ Kψ

}
, (7)

where Kψ = {y ∈ H1
0 (Ω) : y ≥ ψ}, ψ ∈ H1(Ω), ψ|∂Ω ≤ 0 and f ∈ L2(Ω).

The unique solution of problem (7) is an element of H2(Ω).
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Lemma 2.6. Let yψ be the solution of the problem (7) and ŷ the solution
of the problem

−∆ŷ = f, on Ω ,
ŷ = 0, on ∂Ω ,

(8)

then yψ ≥ ŷ almost everywhere on Ω.

The problem (7) in which we replace ψ by ψ̂ = max{ŷ, ψ} ∈ H1
0 (Ω) has

the same solution yψ.

The problem that we obtain after translation is

min
y∈K0

{
1

2

∫
Ω
|∇y|2 −

∫
Ω
fy +

∫
Ω
∇ψ̂∇y

}
. (9)

where K0 = {y ∈ H1
0 (Ω) : y ≥ 0 a.p.t. Ω} = (H1

0 (Ω)+.
The problem has again a unique solution, considering that the functional∫

Ω(fy −∇ψ̂∇y) is linear. Let y0 be this solution.

Proposition 2.7. The solution of the problem (7) can be computed by

yψ = y0 + ψ̂ . (10)

To apply the above results, we now impose the condition p > dim Ω,
that is dim Ω = 1. We shall work in the familiar Sobolev space H1

0 (Ω)
(p = 2).

We define f̂ ∈ H−1(Ω) as (f̂ , y)H−1(Ω)×H1
0 (Ω) =

∫
Ω(fy −∇ψ̂∇y), ∀y ∈

H1
0 (Ω). Consider the approximate problem

min

{
1

2

∫
Ω
|∇y|2 − (f̂ , y)H−1(Ω)×H1

0 (Ω), : y ∈ Ck
}
, (11)

where Ck = {y ∈ H1
0 (Ω) : y(xi) ≥ 0, ∀i = 1, 2, . . . , k} and {xi}i is a dense

set in Ω.

Proposition 2.8. There exists a unique solution y0
k ∈ Ck of the problem

(11).

Using the Sobolev imbedding theorem and the weak lower semicontinuity
of the norm, we can prove the following approximation result

Theorem 2.9. The sequence {ȳk}k of the solutions of the problems (11),
for k ∈ N, is a strongly convergent sequence in H1

0 (Ω) to the unique solution
ȳ of the problem (9).

Applying the Fenchel duality theorem to problem (11) we obtain the
dual problem

min

{
1

2
|y∗ + f̂ |2H−1(Ω) : y∗ ∈ C∗k

}
, (12)

where C∗k = {y∗ ∈ H−1(Ω) : y∗ =
∑k

i=1 αiδxi , αi ≥ 0} is the dual cone.
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Remark 2.10. Let ŷ∗k be the solution of the dual approximate problem (12).
Since ŷ∗k ∈ C∗k , it is sufficient to compute the coefficients α∗i . The solution
y0
k of the approximate problem (11) is computed using the identity y0

k =

J−1(ŷ∗k + f̂) (Theorem 2.4), where J is the duality mapping J : H1
0 (Ω) →

H−1(Ω). We also have α∗i yk(xi) = 0, ∀i = 1, k.

We obtain the formula for the solution of the approximate problem,
denoted by y0

k,

y0
k =

k∑
i=1

α∗i J
−1(δxi) + J−1(f̂)

using the fact that the duality mapping J : H1
0 (Ω)→ H−1(Ω) is defined by

J(y) = −y′′. Applying (10) we find the approximate solution of the general
obstacle problem (7).

2.3 Numerical applications

In this section we apply the above theoretical results to the obstacle problem
for second order operators in dimension one. We comment here just one of
the examples discussed in the thesis.

Figure 1: The dual approximate
solution.

Figure 2: The duality based solu-
tion and the IPOPT solution.

Example 2.1. We consider the general obstacle problem

min

{
1

2

∫
Ω
|∇y|2 −

∫
Ω
fy : y ∈ Kψ

}
, (13)

where Kψ = {y ∈ H1
0 (Ω) : y ≥ ψ}, Ω = (−1, 1), ψ(x) = −x2 + 0.5 and

f(x) =

{
−10, |x| > 1/4 ,
10− x2, |x| ≤ 1/4 .
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We represent in Figure 1 the dual approximate solution and in Figure
2 the obstacle ψ and the solutions, one computed by the duality method
and the other one computed by the IPOPT method [137]. The two solutions
coincide graphically.

3 Fourth order problems

The obstacle problem for the biharmonic operator is an intensely researched
subject in mathematics. Among the many works that treat the problem,
we cite Caffarelli, Friedman and Torelli [37], An, Li and Li [8], Anedda [10],
Landau and Lifshitz [89], Brezis and Stampacchia [33] or Comodi [45].

Many authors have used duality ideas in solving plate related problems.
We mention here the work of Yau and Gao [141] that establishes a general-
ized duality principal, based on a nonlinear version of Rockafellar’s duality
theory [118] and obtains a dual semi-quadratic problem for the von Kármán
obstacle problem. We also recall the works of Neittaanmaki, Sprekels and
Tiba [107] and Sprekels and Tiba [128] devoted to the Kirchhoff-Love arches
and obtaining explicit formulas for the solution.

3.1 The simply supported plate problem with null obstacle

We consider that Ω ⊂ Rn, with n ≤ 3, a bounded domain with the strong
local Lipschitz property. We denote by V the space H2(Ω)∩H1

0 (Ω) endowed

with the scalar product (u, v)V =
∫

Ω ∆u∆v. The norm |y|V =
(∫

Ω(∆y)2
) 1

2

is equivalent to the usual Sobolev norm.
Consider the following obstacle problem

min
y∈K

{
1

2

∫
Ω

(∆y)2 −
∫

Ω
fy

}
(14)

where f ∈ L2(Ω) and K = {y ∈ V : y ≥ 0 in Ω}, which is a simplified
model of the simply supported plate.

By the Sobolev theorem, and using the fact that dim Ω ≤ 3, we have
H2(Ω)∩H1

0 (Ω)→ C(Ω) and thus we may consider the following approximate
problem

min

{
1

2

∫
Ω

(∆y)2 −
∫

Ω
fy : y ∈ V ; y(xi) ≥ 0, i = 1, 2, . . . , k

}
(15)

where {xi}i∈N ⊆ Ω is a dense set in Ω. For each k ∈ N, we denote the closed
convex cone Ck = {y ∈ V : y(xi) ≥ 0, i = 1, 2, . . . , k}.

Proposition 3.1. Problem (14) has a unique solution ȳ ∈ K and problem
(15) has a unique solution ȳk ∈ Ck, for each k ∈ N.

Furthermore, we have the following approximation result
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Theorem 3.2. The sequence {ȳk}k of the solutions of problems (15) is a
strongly convergent sequence in V to the unique solution ȳ of the problem
(14).

We denote V ∗ the dual space of V . Notice that H−2(Ω) is not dense
in V ∗, since H2

0 (Ω) is not dense in V . But the inclusion H2
0 (Ω) ⊂ V is

continuous, then for every y∗ ∈ V ∗ the restriction y∗|H2
0 (Ω) ∈ H−2(Ω). We

obtain the following result

Lemma 3.3. The duality mapping J : V → V ∗ is defined by

J(v) = ∆∆v.

By Fenchel’s duality Theorem, the dual problem associated to (15) is

min

{
1

2
|y∗ + f |2V ∗ : y∗ ∈ C∗k

}
. (16)

where we show that C∗k =
{
u =

∑k
i=1 αiδxi : αi ≥ 0

}
as in Lemma 2.3.

Theorem 3.4. Let ȳk be the solution of the approximate problem (15) and
ȳ∗k the solution of the dual associated problem (16). Then ȳk = J−1(ȳ∗k + f)
where J is the duality mapping J : V → V ∗.

Moreover, (ȳ∗k, ȳk)V ∗×V = 0.

Remark 3.5. Again we have α∗i ȳk(xi) = 0, ∀i = 1, 2, . . . , k.

3.2 The clamped plate problem

We focus now on the clamped plate with null obstacle. We develop a similar
theory as above. The differences emerge from the fact that the maximum
principal doesn’t hold in general for the boundary conditions

u = 0, ∂u
∂n = 0, pe ∂Ω.

We again consider Ω ⊂ Rn, cu n ≤ 3 a bounded domain with the strong
local Lipschitz property. Here, we denote by V the Hilbert space H2

0 (Ω)
endowed with the scalar product (u, v)V =

∫
Ω ∆u∆v.

The obstacle problem is

min
y∈K

{
1

2

∫
Ω

(∆y)2 −
∫

Ω
fy

}
(17)

where f ∈ L2(Ω) and K = {y ∈ V : y ≥ 0 in Ω}.
The problem (17) has the unique solution ȳ ∈ K.
By the Sobolev theorem, and using the fact that dim Ω ≤ 3, we have

H2
0 (Ω) → C(Ω) and it makes sense to consider the following approximate

problem

min

{
1

2

∫
Ω

(∆y)2 −
∫

Ω
fy : y ∈ V ; y(xi) ≥ 0, i = 1, 2, . . . , k

}
(18)

9



where {xi}i∈N ⊆ Ω is a dense set in Ω. For each k ∈ N, we consider the
closed convex cone Ck = {y ∈ V : y(xi) ≥ 0, i = 1, 2, . . . , k}.

For all k ∈ N we denote by ȳk ∈ Ck the unique solution of the approxi-
mate problem (18).

In this case as well, the following approximate result holds

Theorem 3.6. The sequence {ȳk}k of the solutions to the problems (18),
for k ∈ N, is a strongly convergent sequence in V to the unique solution ȳ
of the problem (17).

The dual approximate problem associated with problem (18) is

min

{
1

2
|y∗ + f |2V ∗ : y∗ ∈ C∗k

}
. (19)

For this case we have a similar result as in the case of the simply supported
plate.

Theorem 3.7. Consider ȳk to be the solution of the approximate prob-
lem (18) and ȳ∗k the solution of the dual approximate problem (19). Then
ȳk = J−1(ȳ∗k + f) where J is the duality mapping J : V → V ∗. Moreover,
(ȳ∗k, ȳk) = 0.

Remark 3.8. As before we notice that the complementarity relation α∗i ȳk(xi) =
0, ∀i = 1, 2, . . . , k still holds.

3.3 Numerical applications and comparison of the dual method
with other methods

We apply the algorithms on some examples and compare the results with
other numerical methods. We indicate here just the case of simply supported
plates, but in the thesis clamped plates are computed as well.

Example 3.1. We take Ω the unit disc in R2 and we solve the simply
supported plate obstacle problem

min
y∈K

{
1

2

∫
Ω

(∆y)2 −
∫

Ω
fy

}
(20)

where K = {y ∈ H1
0 (Ω) ∩H2(Ω) : y ≥ 0 in Ω} and f(x1, x2) = 100(−x2

1 +
3x1).

We computed two solutions. The one by the dual method is represented
in Figure 3 and the one by the IPOPT method [137] is represented in Figure
Figura 4 and we notice that they are different.

Comparing the values in Table 1, we conclude that the computed mini-
mum values of the cost functional are lower when applying the dual method.
This shows that the duality methods generates a more precise solution.
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Figure 3: The solution obtained
using the duality based method.

Figure 4: The solution given by
the direct method.

Table 1: The values of the energy functional for different meshes with the
number of vertices denoted by k.

k 205 682 1031 1431 1912 2797

IPOPT -55.8069 -57.9099 -58.168 -58.3493 -58.4457 -58.5392
Dual -78.0675 -80.5279 -80.8705 -81.113 -81.2397 -81.3977

Example 3.2. In the case of fourth order operators, the reduction pro-
cedure to null obstacles generalizes the ideas from second order operators.
Supplementary difficulties appear due to the loss of the regularity properties.

We consider Ω = (0, 2) × (0, 1) and f(r) = −10(−2r2 + 20r − 2), with
r =

√
x2 + y2. We take the general obstacle ψ(r) = −r2 + 2r − 1.5.

We represent the solution computed by the duality type method in Figure
5 and in Figure 6 the solution obtained by the IPOPT method [137].

Figure 5: The solution given by
the duality based method.

Figure 6: The solution obtained
using the direct method.

The two solutions are not identical, but Table 2 shows that the duality
based method generates lower optimal values of the energy functional by

11



Table 2: Optimal values of the energy functional obtained on meshes with
various number of vertices denoted by k.

k 322 484 716 1430 1920 2568

IPOPT -105.675 -108.804 -107.047 -104.101 -103.9 -103.802
Dual -118.551 -121.568 -121.447 -118.268 -118.135 -118.143

comparison with the case in which the direct IPOPT method is used.

This paper is supported by the Sectorial Operational Programme Hu-
man Resources Development (SOP HRD), financed from the European So-
cial Fund and by the Romanian Government under contract number SOP
HRD/107/1.5/S/82514.
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ume 18. Dunod Paris, 1972.

[51] C. M. Elliott and J. R. Ockendon. Weak and variational methods for moving

boundary problems, volume 59. Pitman Boston, 1982.



[52] A. V. Fiacco and G. P. McCormick. Nonlinear programming: sequential uncon-

strained minimization techniques, volume 4. Siam, Philadelphia, PA. Reprint of

the 1968 original., 1990.

[53] G. Fichera. Problemi elastostatici con vincoli unilaterali: il problema di signorini

con ambigue condizioni al contorno, atti acc. Naz. Lincei, Memoria presentata il,

1964.

[54] G. Fichera. Boundary value problems of elasticity with unilateral constraints. In

Linear Theories of Elasticity and Thermoelasticity, pages 391–424. Springer, 1973.

[55] R. Fletcher. Practical Methods of Optimization. John Wiley Sons, Ltd, 2000.

[56] A. Forsgren, P. E. Gill, and M. H. Wright. Interior methods for nonlinear opti-

mization. SIAM review, 44(4):525–597, 2002.

[57] P. Forsyth and K. Vetzal. Quadratic convergence for valuing american options

using a penalty method. SIAM Journal on Scientific Computing, 23(6):2095–2122,

2002.

[58] J. Frehse. Zum differenzierbarkeitsproblem bei variationsungleichungen höherer
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Univ. Ovidius Constanţa, 21(3):181–195, 2013.
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